微生物所在植物病原细菌的“智商”感知信号领域连续获得重要进展

  • 研究生部 (中国科学院微生物研究所)
  • 创建于 2017-04-06
  • 3297

细菌常常被认为是一类低等的单细胞生物,生存方式简单。然而,现代微生物学研究改变了这一错误看法,发现细菌具有许多和高等生物类似的特性。例如,在信号认知这个事关生命生存与死亡的关键问题上,细菌不仅仅能感知环境刺激,而且不同细菌个体之间能利用化合物作为分子语言进行细胞间通讯(即群体感应,quorum-sensing),感知同种生物的存在及种群大小,从而在寄主感染、自由生存和逆境适应过程中相互交流,协作行动,表现出明显的群体性和社会性。

已知细菌的分子语言包括高丝氨酸内酯、小肽、喹喏酮等,其中,一类被称为扩散调控因子(DSF的化合物是黄单胞菌、假单胞菌、嗜麦芽窄食单胞菌和博克氏菌等多种动、植病原细菌进行细胞间通讯的信号物质。在过去的近30年时间里,科学家一步步解析着细菌感知DSF信号的过程和原理:1991年,广西大学唐纪良教授在英国开展研究期间,首次发现植物病原细菌(野油菜黄单胞菌)与动物病原细菌一样,其双组分信号转导系统(RpfC-RpfG)也是调控致病力的主要控制机制;1997年左右,英国John Innes研究中心的MJ. Daniels教授及其同事研究表明:RpfC应该是识别胞外DSF信号的受体,但DSF究竟是什么性质的化合物仍然未知;直到2004年,新加坡分子与细胞生物学研究所(IMCB)张炼辉教授的研究组成功地从细菌分泌物中鉴定出了DSF信号分子,结构解析证明DSF是一种12碳的脂肪酸;此后,研究者鉴定出了许多DSF家族的脂肪酸,发现它们不但是细菌个体间通讯的信号化合物,而且也是细菌与真菌、细菌与植物之间进行跨界信号交流的信号物质。虽然后续研究发现了一些能够结合DSF分子的蛋白质(如RpfRRpfS),但由于它们都是细胞质蛋白,不太像是位于细胞表面感应细胞外DSF的受体。而对于早就被研究者推测感应胞外DSF信号的RpfC来说,由于这个受体结构复杂,是一个含有5个跨膜区的组氨酸激酶,在开展酶学分析和膜蛋白-脂肪酸相互作用研究时技术难度较大,因此一直缺乏直接证据来证明RpfC的确就是细菌感知DSF的受体。

中国科学院微生物所钱韦研究组从事植物病原细菌感知信号的研究,致力于分析细菌双组分信号转导系统(即细菌的“智商”)如何识别寄主植物与环境信号。最近,他们成功地将全长RpfC组氨酸激酶受体组装到脂质双分子层或纳米盘(nanodisc)中,获得了具有酶学活性的蛋白脂质体,为从生物化学水平研究RpfC提供了分析平台。基于该平台,他们综合利用微量热泳动(MST)、热迁移(TSA)和圆二色谱等分析技术,证明DSF分子直接结合在RpfC信号感应区一段长22个氨基酸的区域上,激活RpfC蛋白的激酶活性。特别有趣的是,发现在细菌种群密度低时,RpfC的近膜区(juxtamembrane)抑制自身的激酶活性,但在细菌种群密度较高时,DSF刺激解除了该抑制,从而激活群体感应信号通路,调控细菌致病因子的表达和生物被膜(biofilm)的形成。因此,研究从酶学和生物化学角度提出了有力的证据,不但证明RpfC确实是DSF信号分子的膜受体,解决了细菌细胞间通讯研究中的一个难题。而且建立了膜受体-脂肪酸相互作用生化分析平台,深入研究DSF家族信号分子在细胞间通讯中的调控功能,发展能够阻断细菌群体感应过程的新型抗菌化合物打开了突破口。

这项成果是钱韦研究组继近期发现黄单胞菌的“智商”(即双组分信号转导系统)感知高盐胁迫(Wang et al, 2014, Environ Microbiol. 16:2126-2144)、感知寄主植物体内的铁匮乏环境(Wang et al, 2016. PLoS Pathogens. 12: e1006133)之后,再次在该领域做出的重要进展。研究结果已经发表于期刊PLoS PathogensCai et al, 2017. Fatty Acid DSF Binds and Allosterically Activates Histidine Kinase RpfC of Phytopathogenic Bacterium Xanthomonas campestris pv. campestris to Regulate Quorum-Sensing and Virulence)。微生物所博士研究生蔡珍、袁智惠是论文的并列第一作者。研究获得了中科院战略性先导科技专项B类和国家自然科学基金面上项目的资助。

成果链接:http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006304   

 

 

责任编辑:于洋