光电所联合清华大学、美国亚利桑那大学首次提出自由曲面自适应精密测试技术

  • 光电所 (中国科学院光电技术研究所)
  • 创建于 2017-10-11
  • 594

  光电所先进光学研制中心赵文川副研究员与清华大学精密仪器系副教授、博士生导师黄磊研究组以及美国亚利桑那大学光学加工中心Daewook教授课题组在高精度自由曲面光学检测技术领域开展紧密合作,并于近期在光学顶级期刊《Optics Letter》和《Optics Communications》上连续发表两篇学术论文,首次报道了自由曲面自适应精密测试技术,解决了自由曲面精密加工过程中难以实时高精密测试的固有难题,创建了复杂自由曲面的适配和搜索算法,大大提高了精密测试效率,为建立普适性复杂自由曲面精密测试提供了新颖可行的技术途径。目前国内外未见相关论文报道。

  由于自由曲面的表面面形自由度更大,梯度更大,往往超出了传统干涉测量的动态范围,使得很难实现面形的高精度检测,这给光学自由曲面的制造带来很大困难,严重限制了光学自由曲面的发展与应用。光电所与清华大学组成的联合研究团队提出了一种全新的自由曲面检测技术,采用大行程变形镜作为面形补偿元件,使用条纹反射测量技术实现高精度变形镜的实时动态监测与闭环控制,建立复杂自由曲面的面形自适应搜索模型,研究高精度的系统误差标定技术,使得自由曲面能够实时快速检测,基本原理如图1所示。

  图2为检测实验现场图,图3为变形镜产生第四项和第九项zernike面形时,DS得到的变形条纹图和对变形镜面形变化的检测结果。实验中被测件为一带有像散的未知曲面,如图4(a),其面形误差超过了干涉仪的测量动态范围,因此干涉仪无法获得条纹而无法完成测量。基于该研究提出的测试装置及SPGD自适应搜索模型,在200秒左右就可获得待测自由曲面的清晰条纹,如图4(d)所示。这样根据检测硬件建立系统检测模型,结合干涉检测结果和条纹反射测量结果,通过面形匹配与系统误差标定技术,得到被测面的面形误差,检测结果如图5所示。

  由于此项技术对待测对象没有特殊要求,所提出的测试装置结构简单、成本低廉,因此具有较好的普适性。该工作对于光学自由曲面检测技术的发展具有重要意义。

 图1 基于变形镜补偿的自由曲面检测原理  

 (DS:条纹反射测量装置,DM变形镜)

图2 检测实验现场图

 图3 变形镜产生第四项和第九项zernike面形时条纹反射系统测量结果

图4 干涉仪条纹图(a)未迭代搜索前条纹,(b)(c)迭代搜索1、2次后的条纹,(d)搜索完成后的条纹

图5 检测结果(a)直接采用干涉仪的面形数据,(b)DM变形补偿后的干涉   仪面形数据,(c)DS检测变形镜的结果,(d)系统误差标定后的最终结果

责任编辑:蔡宁宁